# Chemistry 101 Laboratory Fall 2005-2006 

## Lecture 5

Acid - Base Titration

## purpose

- To learn the concept and technique of titration.
- To standardize a sodium hydroxide ( NaOH ) solution against a primary standard acid.
- To determine the concentration of an unknown acid by titration with the standardized base solution.


## Titration

In titration a solution of accurately known concentration, called a standard solution, is added gradually to another solution of unknown concentration (or vice versa) until the chemical reaction between the two solutions is complete.

Equivalence point - the point at which the reaction is complete.
Indicator - substance that changes color at (or near) the equivalence point


Slowly add base to unknown acid UNTIL
the indicator changes color


## Titration (Cont'd)

- End Point: the point in the titration at which the indicator changes color (visually determined).
- Conditions for a good titration
- Rapid and complete reaction.
- Reaction of known stoichiometry (no side products).
- End point easily detected (use proper indicator).


## Acid - Base Titration

Involves a neutralization reaction which is the complete reaction between an acid and a base.

Acid + base $\rightarrow$ Salt + water
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Net ionic equation

## What volume of a 1.420 M NaOH solution is

 Required to titrate 25.00 mL of a $4.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

## WRITE THE CHEMICAL EQUATION!

 $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$$\mathrm{n}_{\mathrm{NaOH}}=2 \mathrm{n}_{\mathrm{H} 2 \mathrm{SO}}$
$(\mathrm{M} \times \mathrm{V})_{\mathrm{NaOH}}=2(\mathrm{M} \times \mathrm{V})_{\mathrm{H} 2 \mathrm{SO} 4}$
$1.420 \mathrm{~mol} / \mathrm{L} \times \mathrm{V}_{\mathrm{NaOH}}=2\left(4.50 \mathrm{~mol} / \mathrm{L} \times 25.00 \times 10^{-3} \mathrm{~L}\right)$
$\mathrm{V}_{\mathrm{NaOH}}=0.158 \mathrm{~L}=158 \mathrm{~mL}$

## Standard Solution

- Is a solution of accurately known concentration.
- prepared by dissolving an exact amount of the solute, followed by dilution, to form a definite volume of solution.

Preparing a Solution of Known Molarity


## Standard solution (cont'd)

- Properties of a good primary standard
- High molar mass
- Stable
- Not hygroscopic
- Highly pure, cheap and available
- Example: potassium hydrogen phthalate, $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$, abbreviated as KHP, molar mass $=204.23 \mathrm{~g} \mathrm{/} \mathrm{~mol}$.


## Standard solution (cont'd)

- Sodium hydroxide is not a good primary standard solution. Solid NaOH absorbs water from air (hygroscopic), and its solution reacts with carbon dioxide.
- In this experiment a sodium hydroxide $(\mathrm{NaOH})$ solution will be standardized by titration with a primary standard acid (KHP) as follows:
$\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
or

$$
\mathrm{KHP}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{KNaP}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

or

$$
\mathrm{HP}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{P}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

net ionic equation

## Experimental

## Three steps are involved:

1- Preparation of a primary standard potassium hydrogen phthalate (KHP) solution.

2- Standardization of 0.1 M sodium hydroxide solution with KHP.

3- Titration of an unknown monoprotic acid with the standardized sodium hydroxide solution.

## 1- Preparation of KHP Primary

## Standard

- Weigh KHP bottle using the analytical balance.
- Transfer the KHP to a 250 mL volumetric flask using a funnel.
- Add some water, dissolve ,dilute and shake, make up to the mark and homogenize.
- Weigh the empty bottle
- Calculate molarity of KHP

$$
\begin{aligned}
& \mathrm{M}=\mathrm{n} / \mathrm{V}=\mathrm{m} /(\text { molar mass }) \times \mathrm{V} \\
& \mathrm{M}=\mathrm{m}(\mathrm{~g}) / 204.22 \mathrm{~g} / \mathrm{mol} \times\left(250.0 \times 10^{-3} \mathrm{~L}\right)
\end{aligned}
$$

## 2- Standardization of 0.1 M NaOH

- Rinse the buret with NaOH .
- Fill it to the mark, make sure that there are no air bubbles in the tip.
- Pipet 10 mL of KHP into an Erlenmeyer flask and add two drops of phenolphthalein indicator.
- Add 10 mL of water.
- Titrate against KHP to the end point (light pink color).
- Repeat the titration 3 times.
- Calculate M of NaOH .

$$
(\mathrm{MxV}) \text { of } \mathrm{NaOH}=(\mathrm{MxV}) \text { of KHP }
$$

## 3- Titration of an Unknown Acid

- Proceed as in part 2.
- Use the unknown instead of KHP
- Titrate against the standardized NaOH solution using phenolphthalein as an indicator.
- Repeat three times.
- Calculate the molarity of the unknown.

